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ACKGROUND CONTEXT: Intraoperative detection of a pedicle wall breach implicitly reduces

surgical risk, but the reliability of intraoperative neuromonitoring has been contested. Hydroxyapa-

tite (HA) has been promulgated to increase pedicle screw resistance and negatively influence the

accuracy of electromyography.

PURPOSE: The primary purpose of this experiment is to evaluate the effect of HA on pedicle

screw electrical resistance using a controlled laboratory model.

STUDY DESIGN: Controlled Laboratory Study.

METHODS: Stimulation of pedicle screws was performed in normal saline (0.9% NaCl). The

experimental group included 8 HA coated (HAC) pedicle screws and matched manufacturer control

pedicle screws without HAC (Ti6Al4V). All screws were stimulated at 5, 10-, 15-, 20-, and 25-mm

submersion depths. Circuit current return was recorded, and pedicle screw electrical resistance was

calculated according to Ohm’s Law. Data were assessed for normality and variance. Mann-Whit-

ney U and Kruskal-Wallis tests compared groups with Bonferroni correction for multiple testing.

Effect size is reported with 95% confidence intervals (95CI). p values <.05 were considered

significant.

RESULTS: Current return was detected for all screws (N=24) following subclinical 8.5 mA stimu-

lation at 5, 10-, 15-, 20-, and 25-mm submersion depths (N=144). The effect estimate of HA on

pedicle screw electrical resistance is -0.07 (-0.17 to 0.01 95CI). The estimated effect of HA on ped-

icle screw electrical resistance did not differ across manufacturers. Electrical resistance values

were inversely related to submersion depth. Electrical resistance values were lower in the experi-

mental group at 10 mm (p=.04), 15 mm (p=.04), and 25 mm (p=.02) submersion depths. The HA

effect ranged from -0.03 to -0.08 as submersion depth varied.

CONCLUSIONS:We found no evidence that HA increased pedicle screw electrical resistance in a

matched manufacturer control laboratory model. Electrical stimulation of pedicle screws may be

reliable for pedicle breach detection in the presence of HA. Future research should investigate if

laboratory findings translate to clinical practice and confirm that electrical stimulation of pedicle
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screws is a reliable method to detect pedicle breach in the presence of HA. © 2021 Elsevier Inc.

All rights reserved.
Keywords: E
lectromyography; Hydroxyapatite; Intraoperative neuromonitoring (IONM); Material science; Pedicle screw;

Titanium; Triggered electromyography
Introduction

Thoracolumbar spine surgery incorporates pedicle

screws into posterior spinal fixation constructs [1−4]. Com-

monly performed under fluoroscopic guidance [5,6] and

intraoperative electrophysiological monitoring [7−9]
including electromyography (EMG), somatosensory, and

motor evoked potentials. To assess the positioning of the

screw within the pedicle, triggered EMG (tEMG) is a tool

used to assess specific myotomes' activity upon activation

of corresponding spinal nerves [10,11]. The minimum cur-

rent necessary to evoke a tEMG response is defined as the

stimulation threshold, [12,13] and the stimulation thresh-

olds that should inform the surgeon of likely mispositioned

screw is debated [14−17].
The sensitivity and specificity of tEMG may be influ-

enced by internal circuit factors and the environment in

which the pedicle screw is stimulated [18]. The pedicle

screw malposition measurement may be influenced by fac-

tors such as screw trajectory and placement, bone quality/

density, and spinal level [19−23]. Further, advances in spi-

nal instrumentation resulted in new materials and coatings

for pedicle screws, such as hydroxyapatite (HA), which is

reported to increase the electrical resistance of the screw,

increasing stimulation thresholds and decreasing the proba-

bility of detecting screw misplacement [16,24]. Conversely,

HA coating (HAC) conferred favorable properties to pedi-

cle screws like increased bony purchase [25,26] and

increased pullout strength [27−29]. To our knowledge,

there has been only 1 published study concluding that HAC

increased the resistive value of pedicle screws when stimu-

lated and therefore could not be reliably used with current

established parameters [30].

Anecdotal, scientifically unconfirmed clinical observa-

tions on behalf of the authors (DL, MK) may suggest other-

wise. Therefore, further scientific study is warranted.

Understanding the electrical behavior and quantifying the

effect of HAC on electrical resistance will enable data-

driven ascertainment of its clinical importance. The primary

purpose was to estimate the effect size of HA on pedicle

screw electrical resistance relative to a match-control in a

controlled laboratory model. Secondarily, we explored the

effect of increased submersion depth in normal saline

(0.9% NaCl) on pedicle screw electrical resistance and the

manufacture HA effect on pedicle screw electrical resis-

tance. Our primary hypothesis was that HA would increase

pedicle screw electrical resistance compared to matched

controls. Secondary hypotheses included (1) no change in

HA effect with increased pedicle screw submersion depth
and (2) no manufacture HA effect on pedicle screw electri-

cal resistance compared to matched controls.

Methods

This experiment was conducted in the Department of

Anesthesiology department at LSU School of Medicine in

New Orleans, LA. All data were sequentially collected in

the laboratory on 1 day using the same microamp meter

with resolution of 0.2 mA (Model 7045 Absolute Process

Instruments, Inc., Libertyville, IL, USA). Data were col-

lected on 8 HAC pedicles screws (experimental group),

including 2 from each manufacturer: (1) Zimmer-Biomet

(ZB) (Zimmer-Biomet, Warsaw, IN, USA), (2) Medtronic

(MT) (Medtronic, Dublin, Ireland), (3) Precision Spine

(PS) (Precision Spine, Inc., Parsippany, NJ, USA) and (4)

NeuroStructures (NS) (NeuroStructures, Inc., Irvine, CA,

USA). Three manufacturers used a plasma-spray coating

process (ZM, MT, NS) for HAC, and 1 used a thermal-

spray (PS) coating process. The manufacturer control group

included uncoated Ti6Al4V pedicle screws (UC). The

experimental group was matched in a 1:2 ratio (1 HAC: 2

UC) to the manufacturer control group. All screws (N=24)

measured 45 mm in length and 6.5 mm in diameter. This

study did not require IRB approval.

Pedicle screws were held on a stereotaxic apparatus, and

the screw shaft was lowered into a beaker containing 0.9%

NaCl solution. Pedicle screws were stimulated on the head

of the screw using an alligator clip connected to a Grass

S88 stimulator with a square wave constant voltage output

of 20 V and a duration of 4 seconds. A 1 megohm (MV)

resistor was put in series to bring the current down into the

subclinical microamp (mA) range. Without a screw in the

circuit, a stainless-steel bus wire submerged in the saline

solution was connected to the circuit, and an 8.5 mA current

return was recorded. The stimulation was repeated with a

second 1 MV resistor placed in series. A 4.0 mA current

return was recorded, confirming an ability to record an

accurate measurement in the presence of a voltage divider

to reduce recording bias and establish internal validity.

Stimulation of each screw was performed, and the current

return was measured with an alligator clip clamped to a bus

wire in the saline bath and hooked to a microamp meter.

Resistive values were calculated using Ohm’s Law. Stimu-

lation was performed, and values were recorded with the

screw tip at 5, 10, 15, 20, and 25-mm submersion depths.

At no time was the head or tulip of the screw submerged.

The decision to use a subclinical microamp (mA) versus

milliamp (mA) stimulus was both practical and purposeful.



Fig. 1. (A-B) The summary of the data is shown as a boxplot, with the box indicating the interquartile range (IQR), the whiskers showing the range of values

within 1.5*IQR, and a horizontal line indicating the median. (A) Sample electrical resistance measurements (N=144). (B) Sample electrical resistance meas-

urements stratified by screw coating (N=144). HAC, Hydroxyapatite-coated; IQR, Interquartile range; UC, Uncoated.
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One criticism of the use of HAC screws and tEMG is that

the coating increased thresholds to supratherapeutic levels,

rendering synchronous use of tEMG and HAC screws inef-

fective [30]. Stimulus intensity in this experiment was a

constant voltage set at 20 V, equivalent to 8.5 mA (0.0085

mA) compared to 2000 mA (2 mA) [31] direct stimulation

intensity to trigger nerve roots and reported trigger thresh-

olds between 200 and 50,000 mA (0.2−50 mA) stimulation

intensities [8,12,14,21,32−34]. Therefore, clinical signifi-
cance was defined as subclinical stimulation (8.5 mA) for

this study.
Fig. 2. Sample Screw Electrical resistance as a function of insertion depth.

The sample was stratified by pedicle screw coating, and the point estimate

at each depth is presented with a 95% confidence interval. HAC, Hydroxy-

apatite-coated; UC, Uncoated.
Statistical analysis

Data were assessed for normality and variance to inform

statistical tests. Descriptive statistics are reported as the

median and interquartile range (IQR). The primary outcome

was pedicle screw electrical resistance. The HA effect size

estimate on pedicle screw electrical resistance was calculated

to convey the clinical significance and a 95% confidence

(95CI) for a precision estimate. Exploratory analyses consid-

ered submersion depth and manufacture as independent vari-

ables. Mann-Whitney U and Kruskal-Wallis tests were used

to determine group differences for primary and secondary

hypotheses, both adjusted for multiple testing by Bonferroni

correction. p values <.05 were considered statistically signif-
icant and 95% confidence intervals (95CI) are reported.

SPSS statistical software (SPSS Statistics for Windows, IMB

Corp., New York City, USA) and MedCalc (MedCalc Soft-

ware, Ostend, Belgium) were used for statistical analysis.

Figures were made with the PlotsofData web app [35].
Results

The current return when there was no pedicle screw in

the circuit was 8.50 mA. All screws (N=24) conducted elec-
tricity during all trial measurements (N=144, 100%) with

subclinical 8.5 mA stimulation to facilitate electrical resis-

tance calculations (Fig. 1). Our total sample had a 1.33

(1.33−1.36 95CI) median electrical resistance (MV) and

ranged 1.23 to 1.86 MV (1.28−1.51 IQR). The HAC sam-

ple (N=48) median was 1.28 MV (1.28−1.33) and ranged

1.25 to 1.86 MV (1.28−1.36 IQR), whereas the UC sample



Table 1

Median resistance values in megaohms (MV) for uncoated (UC) and

hydroxyapatite coated (HAC) pedicle screws at varied depths and the

median difference in resistance values

Depth UC (MV) HAC (MV) HA effect

estimate (MV)

5 mm 1.39 (1.25−1.64) 1.36 (1.28−1.45) -0.03

10 mm* 1.36 (1.25−1.64) 1.28 (1.25−1.36) -0.08

15 mm* 1.33 (1.25−1.64) 1.28 (1.25−1.33) -0.05

20 mm 1.33 (1.23−1.60) 1.28 (1.25−1.33) -0.05

25 mm* 1.31 (1.25−1.60) 1.28 (1.25−1.31) -0.03

HAC, hydroxyapatite coated; MV, megaohm; UC, uncoated.

* Indicative of statistical significance: 10 mm (p=.04), 15 mm

(p=.04), 25 mm (p=.02).

Fig. 3. Impact of HAC Manufacturer on Screw Resistance with UC Con-

trol Comparison. The sample was stratified by pedicle screw coating and

the point estimate is presented with a 95% confidence interval. HAC,

Hydroxyapatite-coated; MT, Medtronic; NS, Neurostructures; PS, Preci-

sion Spine; UC, Uncoated; ZB, Zimmer-Biomet.
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(N=96) median was 1.36 MV (1.33−1.45) and ranged 1.25

to 1.86 MV (1.31−1.54 IQR). The primary outcome was an

effect estimate of HA on our pedicle screw sample resis-

tance and was found to be -0.07 MV (-0.17 to 0.01 95CI).

Secondarily, the pedicle screw resistance was inversely

related to insertion depth (Fig. 2) and decreased in the

experimental and control group as depth increased. The HA

effect estimate ranged -0.08 to 0.03 MV across depth

changes (Table 1). The UC ZB pedicle screw electrical

resistance was the highest in our sample, whereas HAC PS

and HAC NS were the lowest (Table 2). UC ZB pedicle

screw resistance (Fig. 3) was significantly elevated com-

pared to NS (p<.001) and PS (p=.001). The HA effect esti-

mate was largest for ZB (-0.25) and lowest for MT (0.02).
Discussion

We found no evidence of increased electrical resistance

in HAC screws compared to UC manufacturer control

screws. Our primary hypothesis was supported by our results

in that all screws (N=24, 100%) conducted electricity with

subclinical 8.5 mA stimulation and facilitated the calculation

of the HA effect. Our secondary null hypotheses failed to be

rejected. There was no evidence of higher resistive values

using HAC screws; on the contrary, HAC screws demon-

strated lower electrical resistance values relative to UC

screws (p<.001). Screw depth within the saline solution

influenced the mean electrical resistance (Table 1), albeit

the observed trend is unlike to be of any clinical signifi-

cance. Electrical resistance was highest at 5 mm of insertion
Table 2

Median resistance values in microohms (MV) for uncoated (UC) and hydroxya

median difference in electrical values

Manufacturer UC (MV): median (range)

Zimmer-Biomet* 1.57 (1.51−1.86)
Medtronic 1.31 (1.25−1.75)
Precision Spine 1.36 (1.31−1.75)
NeuroStructures 1.31 (1.25−1.54)

HAC, hydroxyapatite coated; MV, megaohm; UC, uncoated.

The UC screw sample included 16 measurements, whereas the HAC sample in

* Zimmer-Biomet screws tested with significantly elevated resistance values
(1.39 for UC and 1.36 for HAC). Electrical resistance was

lowest at 25 mm (1.31 for UC and 1.28 for HAC). Lastly,

electrical resistance values varied significantly across manu-

facturers, with screws (UC and HAC) Zimmer-Biomet dem-

onstrating significantly higher electrical resistance.

The primary purpose of this experiment was to observe

any differences in the mean resistive values between UC

and HAC screws and quantify the absolute difference if

present. Our results do not provide evidence to suggest

increased electrical resistance of HAC screws, which would

render HAC screws incompatible with tEMG. This study

controlled for the possible effects of current shunting

through adjacent tissues as posed by Davis et al. [30]. Con-

versely, subclinical stimulation of HAC screws refuted the

published conclusion that any response from stimulation is

conditional on shunting through adjacent tissue [30]

because shunting was controlled by stimulating the unsub-

merged head of the screw. We believe stimulation at sub-

clinical intensity removed uncertainty related to

intraoperative electrophysiological monitoring utility.

There is no standardized methodology to measure screw

electrical resistance. Only 1 study to date has evaluated the

resistive values of HAC pedicle screws. The prior study
patite coated (HAC) pedicle screws for each manufacturer along with the

HAC (MV): median (range) HA effect estimate (MV)

1.32 (1.25−1.86) -0.25

1.33 (1.25−1.48) 0.02

1.28 (1.28−1.45) -0.08

1.28 (1.25−1.51) -0.03

cluded 8 measurements.

compared to Neurostructures (p<.001) and Precision Spine (p=.001)
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measured screw electrical resistance in air. We designed

our model to assess electrical resistance in normal saline

(0.9% NaCl), which more accurately reflects the animal

model [36,37] triggered EMG was validated in and clinical

practice. Consequently, our reported electrical resistance is

valid for relative internal model comparison and requires

external validation. We wish to highlight the limitations of

electrical testing of pedicle screws using a model [18]. As

such, the surgeon must be conscious of the model limita-

tions to inform decision-making. Davis et al. published data

showing that HAC screws had an axial electrical resistance

that averaged 3.97 £ 10�3Ohms than UC screws, which

had an average axial electrical resistance of 1.75 £ 1011

Ohms [30]. There appeared to be an error in either the fig-

ures or the text of the Davis et al. paper as they conclude

that the HAC screws have a higher electrical resistance

than the UC screws, but the text and table conflict. The

study's key conclusions were that HA insulated the screw,

increasing its electrical resistance beyond a useful stimula-

tion threshold. The authors used an independent lab to per-

form the experiments and lack sufficient detail in the

published methods to reproduce their work. We present evi-

dence that HAC screws have a significantly lower stimula-

tion threshold than UC screws. Notably, we believe the

difference to be statistical [38] and not clinically significant

[39]. Considering the absolute difference is almost unde-

tectable at a precision several magnitudes below clinical

instrumentation, the effect size is not clinically relevant if

present. Thus, we believe this represents a random error

rather than a systematic error. Nevertheless, nonparametric

tests and Bonferroni correction were included to strengthen

statistical methodology and reduce spurious findings [40

−42]. However, we observed inter-manufacture differences

in electrical resistance. Subsequently, the differences may

be a function of the titanium alloy or the coating process.

In a prior investigation of titanium and stainless-steel

pedicle screws, [24] the authors concluded the electrical

resistance values were similar and not clinically significant.

They opined that constant-current stimulators provided

clinically accurate values up to an electrical circuit resis-

tance of at least 1000 Ohms, and their detected electrical

resistance value range (0−36 Ohms) would not be clinically

significant. The report included an observation that electri-

cal resistance values trend toward infinite electrical resis-

tance (open circuit) as a byproduct of poor circuit

component contacts. The screws were stimulated at the

head and avoided possible stimulation at a site coated in

HA. Further, the laboratory design incorporated a baseline

assessment of the circuit that incorporated a standardized

resistor to confirm accurate measurements. Our results were

consistent across our HAC and UC screw pool, whereas

their data was reported for 1 manufacturer.

Statistically significant differences in electrical behavior

across manufacturers were identified. There was a statisti-

cally significant increased mean resistive value for

Zimmer-Biomet UC screws relative to Medtronic (p<.001),
Neurostructures (p<.001), and Precision Spine (p=.001).

Our data indicated discrepancies in the electrical behavior

in UC screws that were not appreciated in HAC screws.

Prior reports documented that not all HA coatings are the

same [25,26,43,44]. There are no standardized manufactur-

ing guidelines for depositing HA on implants, which may

influence integrity and bias findings to explain differential

findings in published data partially [45]. These reports dem-

onstrate that coating methods alter the base material proper-

ties and compromise the structure. As such, the authors

called for vendor comparison studies to reduce controver-

sial and confounding results, which may be residuals of

HA-induced substrate alteration [46]. Three manufacturers

in our study use a plasma-sprayed coating process (ZM,

MT, NS) and 1 used a thermal-spray coating process (PS).

Three manufacturers demonstrated a negative HA effect

estimate on resistance (ZM, PS, NS), whereas 1 demon-

strated an increase (MT). If the coating or coating process

contributed to the divergence, it would only partially

explain the electrical behavior. The manufacturer effect on

tested differences may be more important than the coating

effect, unintentionally introduced earlier in the production

of the screw. The potential impact on our results is unclear

and necessitates further investigation. In any case, the abso-

lute difference in electrical resistance is believed to be

below clinically relevant thresholds [24]. We postulate the

intraoperative electric field that pedicle screw resistance is

tested may be impacted to a greater degree by patient fac-

tors than technical factors like HAC. Several reports have

suggested bone resistivity is a function of bone density and

patient factors related to bone density (osteopenia vs. osteo-

porosis) may warrant future investigation [47−49]. Our

data does not enable meaningful conclusions about the

magnitude of change or alternative variables but does refute

the implication that HAC increases electrical resistance,

thus diminishing the clinical utility of tEMG. The authors

believed the increased conduction of the HAC screws as

identified with subclinical stimulation is likely insignificant

in the clinical setting. Further clinical testing is warranted

to support or refute such contentions.

To the authors' knowledge, this is the first study to inves-
tigate the properties of HAC screws with a manufacturer

control and investigate the potential influence of screw

insertion depth. Manufacturer control is critical considering

the impact that subtle processing differences may have on

screw behavior and topography, possibly influencing elec-

trical properties [50,51]. Second, this study provided clini-

cally relevant data: no evidence of tEMG and HAC

incompatibility. Our data suggests the use of tEMG, a pow-

erful modality to detect malpositioned screws, and HAC

screws are compatible [8,19,52,53]. These findings are par-

ticularly relevant for surgeons considering the increased

awareness of misplaced screws [16,17]. Per-patient analysis

illuminated that over 40% of patients had concerning

screws that had been previously misrepresented by a screw-

oriented [15] surrogate analysis of misplacement rate [17].
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Third, research on implant design, materials, and techni-

ques critically focuses on biological and mechanical proper-

ties rather than electrical [54]. This contribution addresses a

relative void in the literature and hopefully encourages fur-

ther electrical investigations applied to spinal surgery.

One limitation is that this study is a small sample size.

The cost of pedicle screws was an impeding barrier to the

investigation, subsequently imposing the possibility of type

II error. Nevertheless, the importance of our study is not

dependent on statistical significance. Instead, the signifi-

cance is derived from an internally valid model revealing

an HA effect estimate magnitude with narrow precision

estimates consistently below clinically detectable resistance

measurements. Second, a similar study's methods were not

available, and a reproducibility assessment was not possible

[30]. Though, our model aligns more closely with clinical

practice, and our results benefited from multiple manufac-

turers for increased generalizability. Third, the results

revealed an inexplicable difference in UC screw properties

between manufacturers. Considering the sensitivity of our

instrument and the magnitude of the difference, we feel the

difference is likely a clinically significant and spurious find-

ing. The finding would not be clinically detectable and a

consequence of our small sample. Smaller samples tend to

adopt more extreme values, whereas larger samples better

approximate the population’s true value [55]. This study

was not designed to determine the rationale for the differen-

ces identified between screws and between differences

between manufacturers. We emphasize that statistical sig-

nificance does not imply clinical significance. When stimu-

lated, the observational data of screw behavior is critical,

demonstrating an absolute difference that would be unde-

tectable with clinical instrumentation. Nevertheless, the

exploratory basic science investigation incorporated a Bon-

ferroni correction to minimize spurious results and justify

future clinical research. Lastly, limitations to basic science

study designs: findings do not always translate into mean-

ingful applications within one's clinical practice [56].
Conclusions

Electrical stimulation of pedicle screws may be reliable

for pedicle breach detection in the presence of HA. We

found no evidence that HA increased pedicle screw electri-

cal resistance in a matched manufacturer control laboratory

model. Future research should investigate if laboratory find-

ings translate to clinical practice and confirm that electrical

stimulation of pedicle screws is a reliable method to detect

pedicle breach in the presence of HA.
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